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Figure 1. Overview. On the left panel, we present examples of referential language distinguishing the shape of a “target” geometry
(enclosed inside a green box) from two “distractor” objects. Using such language our proposed task is to estimate directly in 3D-space
semantic part segmentations of objects. On the right panel, we present the key ingredients of the neural architecture to facilitate this
goal: given referential language and unsupervised 3D super-segments of shapes, we learn a set of attention maps that corresponds to
semantic shape parts (when properly regularized), discovered solely by solving the language-reference problem of identifying the target
shape. Tapping on the zero-shot learning capacity of natural language learners, and the shared part-composition of common objects, we
find examples of zero-shot segmentations on a table and lamp objects, extracted from learners and language concerning only chair-based
comparisons.

Abstract

We introduce PartGlot, a neural framework and associ-
ated architectures for learning semantic part segmentation
of 3D shape geometry, based solely on part referential lan-
guage. We exploit the fact that linguistic descriptions of a
shape can provide priors on the shape’s parts – as natu-
ral language has evolved to reflect human perception of the
compositional structure of objects, essential to their recog-
nition and use. For training, we use the paired geometry /
language data collected in the ShapeGlot work [3] for their
reference game, where a speaker creates an utterance to
differentiate a target shape from two distractors and the lis-
tener has to find the target based on this utterance. Our
network is designed to solve this target discrimination prob-
lem, carefully incorporating a Transformer-based attention
module so that the output attention can precisely highlight
the semantic part or parts described in the language. Fur-
thermore, the network operates without any direct super-
vision on the 3D geometry itself. Surprisingly, we further

demonstrate that the learned part information is generaliz-
able to shape classes unseen during training. Our approach
opens the possibility of learning 3D shape parts from lan-
guage alone, without the need for large-scale part geometry
annotations, thus facilitating annotation acquisition.

1. Introduction

Object perception is often based on structural abstrac-
tions — the decomposition of an object into its parts and
their inter-relationships [11, 12, 17]. Natural language re-
flects this aspect of human perception of 3D shapes – when
a human is asked to describe an object, the description usu-
ally involves words naming parts and expressions about part
attributes and their relationships. This implies that, con-
versely, language descriptions of an object can provide pri-
ors on the compositional structure of the object geometry,
including the identity of its components or parts. In this pa-
per, we study the interplay between these two very different
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modalities, geometry and language, and how it can guide
learning shape structure and parts.

ShapeGlot [3] explored the interplay between natural
language and object geometry for the task of differentiat-
ing objects. It proposed a way to design a crowd-sourcing
task to elicit more part-related referential language (utter-
ances) about objects from users, based on a reference game.
Specifically, one user (the speaker) is shown three related
objects (a “target” shape and two “distractor” shapes) and is
asked to describe how the target is different from the distrac-
tors. A second user (the listener) is then asked to select the
one described by the first user. An interesting aspect of this
work is that even though in training the (referential) neural
networks are only given holistic shape representations with
no part information whatsoever, they learn to depend heav-
ily on part-related words and the corresponding visual parts
of objects.

Motivated by this initial observation and using the same
data, our work investigates how well a neural network can
connect part names in the utterances to specific regions
in the geometry of the 3D shapes. We show the remark-
able fact that geometric object part structure can emerge
from language alone, without any direct geometric su-
pervision on part segments, highlighting the deep ties be-
tween language and geometry. In other words, we can dis-
cover semantic part segments on the geometry by exploiting
solely referential language data. Even the language data we
use is pragmatic, not guided by any comprehensive parton-
omy as done by previous work [18], but merely focusing on
describing shape differences.

Our framework is based on a variant of the neural lis-
tener pipeline in ShapeGlot, taking a language utterance
plus three 3D shapes in point cloud format and predicting
the probability of how likely each of the shapes is to be
the target described by the utterance. For this learning task,
we explore the application of a Transformer-based attention
module [38] to learn the region corresponding to each part
described in the utterance as attention focus. Simply plug-
ging in an attention module, however, does not produce any
meaningful regions aligned with the semantic parts. Hence,
we make several important changes that lead the network
to learn meaningful part segmentation masks as a byprod-
uct of learning to identify the target shape. Our experi-
mental results demonstrate that the essential architectural
components in our network significantly improve the per-
formance of part segmentation. Also, in the case when the
full set of part names are given at training time, we show
that this additional information can be leveraged to better
detect and segment parts. Furthermore, we show that our
network can generalize to out-of-distribution categories of
shapes – specifically, with training done on Chairs, good
semantic masks can be extracted out of instances of Tables
and Lamps.

Beyond studying the capability of neural networks to
jointly understand language and shape, this work also sug-
gests a new potential way to collect data for object part seg-
mentation. Object or scene segmentation is a fundamental
problem in many vision tasks, but the advance of learning-
based segmentation techniques is gated by the availability
of large-scale human segmentation annotations of 2D im-
ages or 3D models. Particularly for 3D, collecting manual
annotations on 3D objects requires a huge amount of human
effort and cost. In contrast to this, uttering a language de-
scription is a much more natural way for people to provide
information about object structure and geometry. We hope
to see a lot more work on how 3D segmentation can be im-
proved using the language description of objects, without
direct geometry supervision.

2. Related Work
Language and Shape Works that explore the intersection
between language and geometry have taken many forms,
from resolving language references [2, 3, 36], to generat-
ing language descriptions of a shape [3,19], to generating a
shape given a language description [22, 34]. Most relevant
to our work are the ones that attempt the language refer-
ence game, where the task is to select based on a language
description a target shape out of a set of potential candi-
dates either in a collection of individual 3D shapes [3, 36]
or within a scene [2, 20, 33, 40, 43, 45]. While most of these
works treat the reference game as a classification problem
on the set of candidates, [20] outputs a segmentation mask
over the scene. However, unlike our method, their work 1)
applies to 3D scenes instead of individual shapes, and 2) re-
quires full supervision for the segmentation task. To the best
of our knowledge, our work is the first to derive part-level
segmentation masks from spatial attention as a byproduct of
learning to play the language reference game.

Transformers Not only have Transformers demonstrated
superior performance in several tasks [4, 10, 16, 21, 38, 41],
but they also are characterized by interpretability of the at-
tention map and can discover meaningful correspondences
between different modalities [41]. In addition to being ap-
plied in the 2D visual domain [4, 10, 16], transformers have
also been used in the 3D spatial domain for a variety of
tasks, operating most commonly on point clouds. A va-
riety of attention mechanisms has been introduced [31].
For instance, [42] adapts the transformer architecture for
point cloud completion. Works like [13,26,44] have shown
superior performance on the semantic segmentation task
by including modules that employ self-attention over point
clouds. However, in all the above cases, the segmentation
masks were developed with heavy supervision, and not ex-
tracted using the attention over the spatial domain. They
furthermore do not attempt to leverage information from
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other modalities. Here, instead of using self-attention over
only the spatial domain, we use cross-attention between
multiple modalities — a byproduct of learning language ref-
erences — for the segmentation task.

Self-Supervised or Weakly-Supervised Segmentation
[46] proposed a weakly-supervised shape co-segmentation
method. Two key elements are the part prior network and
low-rank loss. It first trains the part prior network to learn
a part prior by denoising unlabeled segmented parts from
random noise. From this pre-trained part prior network, the
co-segmentation network is optimized to output consistent
segmentations via low-rank loss. Low-rank loss regularizes
the network to maximize the similarity of the part feature
belonging to the same part by minimizing the rank of the
matrix consisting of part features of the same part across all
test shapes. [39] also utilizes two key elements introduced
in [46] for the fine-grained segmentation without part se-
mantic tags. Those networks are trained in a label-agnostic
manner, but still require segmentation information to train
the part prior network. Our model does not require any part
prior, but learns geometry from language on the fly.

Shape Decomposition Recently, there have been many
works [6, 7, 7, 8, 14, 27, 28, 37] for shape decomposition.
[15, 28, 37] abstract a complex shape into multiple primi-
tives, cuboids, superquadrics or gaussians, by regressing the
parameters of the primitive that fit to the target shape. [6, 8]
decompose a shape as a collection of convexes. [7,27] learn
an implicit field to represent the shape. Those works have
demonstrated to abstract the shape into multiple primitives,
but those primitives lack of semantics. So, they usually as-
signed the label for each primitive by hand in the test time.

3. Attention-Based Part Segmentation
3.1. Background and Overview

We investigate the capability of a neural network (partic-
ularly, an attention module) to learn semantic parts of a 3D
object solely from referential language of an object without
any explicit supervision of its part segmentations. For this,
we deploy a listening comprehension task similar to Shape-
Glot’s [3] as our basic learning objective. Specifically, given
a triplet of shapes and an utterance differentiating one of
them, our main task is to learn to identify the referred target
shape (Figure 2). For this task, a variety of viable neural net-
work architectures can be designed to assign a probability
to each shape indicating its congruence with the underlying
utterance. This work is the first to demonstrate that by care-
fully incorporating an attention module over the 3D spatial
domain of the visual stimulus (e.g., attention over unordered
sets of 3D point clouds), our network can not only learn to
identify the target shape but also discover 3D regions of the

parts described in the utterance as a byproduct of solving
the reference task.

We adapt the original neural network architecture in
ShapeGlot to better facilitate our goal of recognizing and
segmenting object parts with language alone. First, we fo-
cus on the application of neural listeners operating solely
on 3D geometric representations – 3D point clouds – and
ignore 2D image-based projections used in ShapeGlot. Sec-
ond, we also explore the effect of partitioning the input
point cloud into subgroups, namely super-segments (anal-
ogous to superpixels [1] in 2D), and cast the semantic part-
prediction problem over those larger entities. Crucially,
super-segments (groups of points) can be derived with a
self-supervised approach (in our experiments, we use the
output of BSP-Net [6]); hence their utilization does not un-
dermine our goal of annotation-free 3D part segmentations.
Third, we add a Transformer-based [38] attention module
taking the utterance or a part name as a query. We also
change the architecture of the geometry encoder to make the
neural network seek an appropriate local region for atten-
tion; more details are described below. We investigate two
different setups of the problem: with and without knowl-
edge of the full set of part names during training.

3.2. Part-Name-Agnostic (PN-Agnostic) Learning

We first describe a learning scenario where the set of part
names is not known during training. The association be-
tween part names (words) and regions in the 3D shape in
this case has to be learned solely from the connection be-
tween utterances (a single or multiple sentences) and the
entire 3D shapes.

The network architecture is illustrated in Figure 2. The
input utterance u is encoded into two encoders: attention
encoder fa(·) which decides “where to look” and classi-
fication encoder fc(·) which determines “whether it is the
target shape or not”. For both encoders, we use an utterance
encoder similar to the one used in the ShapeGlot; the token
codes of the words in a sentence are randomly initialized
and then processed via an LSTM sequentially with the stan-
dard bilinear word attention mechanism [23]. The output
of the attention encoder fa(u) becomes the query vector in
the subsequent Transformer [38], and the output of the clas-
sification encoder fc(u) is concatenated with the output of
the Transformer (a weighted sum of the super-segment fea-
tures) and is used to predict the classification probabilities.

For the three input shapes {o1, o2, o3}, the target and
two distractors, each of which is represented a set of super-
segments o = {si}, we extract a key gk(si) and a value
gv(si) vector of each super-segment si using PointNet [30].
In the following single cross attention layer, the attention
from the utterance u to each super-segment si is calculated
by taking a dot product of the query and key — let x be a
vector where xi = fa(u)

T gk(si) — and then normalizing
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Figure 2. A higher-level overview of our architecture playing a reference game. There are three main encoders: Classification Encoder
fc, Attention Encoder fa and Per-Super Segment Encoder g. The cross attention module aggregates Per-Super-Segment features based on
Query to output the shape feature. The concatenation of the output of Classification Encoder fc(u) and the shape feature produces the
final classification probability. The attention map contains the semantic information corresponding to input language.

them over super-segments using a softmax:

wi = σ(x)i =
exi∑
i e

xi
. (1)

The resulting probability distribution over the super-
segments {wi} becomes the attention expected to indicate
the part described in the utterance u. The value vectors
{gv(si)} are then aggregated by taking the probabilities
{wi} as weights in a weighted mean, concatenated with
the output of the classification encoder fc(u), and fed to
an MLP to predict the classification score of each object.

A crucial detail in this architecture is to normalize the
query fa(u), key gk(si), and value gv(si) vectors to have
a unit norm. Although missing this normalization does not
affect the accuracy of target shape discrimination, it largely
influences the attention and helps align the attention to a se-
mantic part in practice since the weights in the attention can
vary according to the different norms of the value vectors
gv(si). The effect of the normalization is shown in Sec-
tion 4.2. Note that, in Equation 1, we also do not divide the
dot product of the query and key by the square root of the
vector dimension as typically done in Transformer since all
the vectors are normalized.

One more important observation is that the method used
to process set data is critical. Following PointNet [30],
many neural networks processing set data use the idea of
combining local features with a global feature, which is cre-
ated by aggregating all the local features using a symmetric
function such as max-pool. In our pipeline, we find that the
concatenation of the global feature to each super-segment
feature results in totally meaningless attention since the
Transformer does not need to attend to a specific region,
as each point can provide global shape information to com-
plete the reference task. Hence, all super-segments are pro-
cessed independently with the shared network module.

At test time, we obtain the attention of a part by lever-
aging a similar setup as CLIP [32]; a template language

expression is used as the input utterance. In our exper-
iments, we specifically use an expression: “a chair
with {part name}”. Given a set of part names, a seg-
ment per part is achieved by taking super-segments whose
probability of the part attention is higher than the probabil-
ities of any other attentions.

3.3. Part-Name-Aware (PN-Aware) Learning

In the case when the set of part names {lk} is prede-
fined at the training time, we leverage this additional super-
vision to better align the output attentions to the given set of
parts. Note that there is still no part segmentation supervi-
sion, since only the set of part names is given. In this setup,
we also assume that each utterance describes one and only
one part in the given set.

From the architecture introduced in Section 3.2, we first
change attention encoder fa(·) to take not the input utter-
ance u but the part name l described in the utterance as
the input. Hence, a single-layer MLP for the part name
latent token is used instead of an LSTM. In the test time,
we also do not need to use a template expression; the part
name can be directly fed to the attention encoder. Also,
since now the set of part names is given, we propose to
jointly normalize the attentions of different part names,
which is essential to improving attention-based part seg-
mentation. We specifically collect the dot products of the
query and key vectors fa(lk)T gk(si) for all the part names
{lk} and super-segments {si}. Let X be a matrix where
Xik = fa(lk)

T gk(si). Then, we apply softmax to X twice;
along the set of part names first (along k) and then along the
super-segments (along i):

Yik = σ(Xi,:)k (2)
Wik = σ(Y:,k)i, (3)

where σ(·) is the softmax, and W = {Wik} is the final
weights. The first additional softmax along with the part
names (k) plays the role of making Xik be spikier for each
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super-segment, enforcing a super-segment to belong to only
one part name. This can thus avoid overlaps across the at-
tention maps of different part names. We empirically find
that still the final attention weights should be normalized
over the super-segments to achieve the best performance.
We show a comparison across different cases of applying
softmax in our ablation study (Section 4.2).

Regularization Based on Cross Entropy To further en-
force partitioning of the output segments — ensuring that a
point is assigned to one and only one part name — we intro-
duce a regularization loss based on cross entropy. Given Y
(the output of the first softmax) and for each super-segment
si, we find the part name lk that gives the highest probabil-
ity Yik and compute the cross entropy loss by considering
that the part as the ground truth label:

LCE =
∑
i

∑
k

−1
(
k = argmax

k′
(Yik′)

)
log(Yik) (4)

In addition to the double softmax, the regularization loss
makes Y even spikier and further avoids overlaps across
the attention maps of different part names. The ablation
study in our experiments analyzes the effect in practice
(Section 4.2).

4. Experiments

4.1. Dataset and Evaluation

In our experiments, we use the Chair in Context (CiC)
dataset introduced in ShapeGlot [3]. CiC includes sets of
triplets of chairs from ShapeNet [5] (a target and two dis-
tractors) and an utterance for the target chair, created by
human speakers playing the grounded reference game.

Utterance Preprocessing We first preprocess the utter-
ances of CiC by fixing typos, converting plural nouns to
singular nouns, and dividing a compound word into sin-
gle words, e.g., “armrest” to “arm rest”. For the PN-Aware
setup, we choose the following four part names as the given
set: back, seat, leg, and arm, which are also chair part seg-
ments annotated in ShapeNet [5]. We also only use chair
triplets in CiC where their associated utterance describes
only one of these parts. After the preprocessing, the dataset
contains 40,660 sets and 4509 unique shapes. We split the
sets into train, validation, and test datasets with an 80%-
10%-10% ratio. Since the numbers of the utterances de-
scribing each part are imbalanced, during training, we sam-
ple the utterances with the probabilities inversely propor-
tional to the numbers of each part utterances.

Figure 3. Super-segments generated by a pretrained model of
BSP-Net [6]. The colors are randomly assigned to super-segments.

Table 1. Super-segment statistics.

Min. Max. Mean

# Super-Segs 4 47.4 20.6
# Pts in Super-Segs 0 1550.0 90.3

Super-Segment Generation The super-segments of each
shape are produced by a pre-trained BSP-Net [6], provided
by the authors; see examples in Figure 3. Then, each super-
segment is represented with a small set of points, generated
by randomly sampling 2048 points over the entire shape and
assigning them to super-segments based on proximity — a
point is assigned to one and only one super-segment whose
signed distance to the point is the minimum, and thus the
super-segments partition the point cloud. See Table 1 for
the statistics of the number of super-segments and the num-
ber of points in each super-segment. We further sample the
points per super-segment so that the maximum number of
points becomes 512.

Segmentation Evaluation At test time, we obtain seg-
ments of the four parts — back, seat, leg, and arm — as
the attention. Depending on whether the setup is PN-Aware
or PN-Agnostic, either the template sentence mentioned in
Section 3.2 or the part name itself is fed to the attention
encoder fa(·) and used to generate the attention. The super-
segments are assigned to the part name with the highest
probability in the attention. The segmentation are evalu-
ated based on ground truth part segmentation annotated in
ShapeNet [5]. The standard mIoU is used as the evaluation
metric of the segmentation. The average mIoU indicates
taking mean per instance and averaging over the shapes.

4.2. Results

The quantitative and qualitative results of our experi-
ments are summarized in Table 2 and Figure 4. We first
show two comparisons PN-Agnostic (Section 3.2) vs. PN-
Aware (Section 3.3), and super-segments vs. points. We
then show the results of the ablation study for each cru-
cial component in our pipeline. We also show the results
of analyzing the effect of few-shot learning when assum-
ing that the ground truth part segments are annotated in a
few shapes. In the end, we also demonstrate that our frame-
work learns general part information that can be transferred
to other shape classes (e.g., Tables and Lamps), and we also
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GT PN-Agnostic
(Ours)

PN-Aware
(Ours) Points P→ Sp.-Seg. w/o

Unit Norm σ(X)→ i σ(X)→ k
σ(X)
→ i→ k

w/ Global Feat. w/o LCE

Figure 4. Samples of extracted part segmentation across variations of our method, indicated by the 4 colors. Purple, blue, green and yellow
indicate the prediction as back, seat, leg, and arm, respectively. The colors assigned to the super-segments in the ground truth column (GT)
are computed based on ground truth point cloud part segmentation from ShapeNet [5]. Note that our PN-Agnostic and PN-Aware setups
produced the best segmentation masks.

visualize the word attention in the utterance encoding.

PN-Agnostic vs. PN-Aware We first compare the two
cases described in Section 3: when leveraging the set of part
names in training (PN-Aware) or not (PN-Agnostic). The
mIoUs are reported in rows 1 and 2 of Table 2. While PN-
Agnostic (row 1) works well in most cases, it particularly
shows a low mIoU for arm compared to the case of learn-
ing with part names (40.6 vs 70.4). The arm is an optional
part that may not exist in some shapes, and by definition of
mIoU (used in PointNet [30]), it becomes zero when there
even exists a single super-segment assigned to arm while

arm does not exist. We observe that such failure cases hap-
pen when the full set of part names are not leveraged during
training (see the examples in the second and eighth row in
Figure 4), although these cases are greatly reduced after the
part names are used (PN-Aware) with our essential compo-
nents in the network. The reasons are further analyzed in
the ablation study below. Note that the accuracy of target
shape classification is almost the same for both cases. The
cross-part mIoUs are reported in the supplementary.

For the rest of the experiments, we show the results for
PN-Aware with various setups.
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Table 2. Quantitative Results of all experiments: [Id 1, 2] Compar-
ison of two baselines; [Id 3-5]: Comparison of the input granular-
ity; [Id 7-12]: ablation cases; [Id 13-15]: few-shot learning results.
For each experiment, the model was selected with the highest clas-
sification accuracy on the validation set. Bold indicates the highest
mIoU except for the few-shot learning results.

Id Method Segmentation mIoU(%) Classif.
Acc.(%)Back Seat Leg Arm Avg.

PN-Agnostic (Sec. 3.2) vs. PN-Aware (Sec. 3.3)

1 PN-Agnostic (Ours) 82.2 78.8 75.5 40.6 69.3 61.6
2 PN-Aware (Ours) 84.9 83.6 78.9 70.4 79.4 61.5

Points vs. Super-Segments (w/ PN-Aware)

3 Points 40.7 0.2 38.1 10.8 22.5 57.2
4 P → Sp.-Seg. 39.2 0 44.1 63.3 36.6 57.2
5 Sp.-Seg. (Ours) 84.9 83.6 78.9 70.4 79.4 61.5

6 Upper Bound* 89.8 88.9 85.2 92.3 89.1 -

Ablation Study (w/ PN-Aware)

7 w/o Unit Norm 78.5 81.0 77.4 54.4 72.8 63.0
8 σ(X) → i 80.8 77.5 75.3 56.6 72.5 63.4
9 σ(X) → k 73.8 76.1 75.8 79.8 76.4 61.9
10 σ(X) → i→ k 79.4 80.3 74.1 35.1 67.2 59.0
11 w/ Global Feat. 38.6 0.2 77.7 4.6 30.3 62.2
12 w/o LCE 82.6 79.7 77.4 71.4 77.8 59.8

Few-Shot Learning (w/ PN-Aware)

13 k=1 85.5 83.5 78.4 73.2 80.1 59.4
14 k=8 86.1 84.2 78.9 70.6 79.9 60.0
15 k=32 86.9 84.8 79.5 76.5 81.9 59.7

Super-Segments vs. Points We also demonstrate the ad-
vantage of using super-segments as input in our pipeline.
We compare our case with two baselines: 1) using the raw
point cloud as input (row 3 in Table 2) and 2) using the
point cloud but projecting the prediction result to the super-
segments in test time (row 4 in Table 2). For the second,
each point belonging to a super-segment votes for the part
names, and the super-segment takes the part name of the
majority. Row 6 in Table 2 shows an upper bound, when
the part names are assigned to super-segments based on the
ground truth segmentation of the underlying point cloud.
When comparing our case using super-segments (row 2 and
5 in Table 2 — these two are the same) with these two cases,
the mIoUs are significantly improved, and even our results
are close to the upper bound. The low mIOUs of the sec-
ond case (projecting point results to super-segments) show
the value of these super-segments to be used in the train-
ing process, rather than just used in a post-processing step.
See also the fifth column of Figure 4 for poor qualitative re-
sults. The target shape classification accuracy is also a bit
increased when super-segments are used instead of points.

Ablation Study We also demonstrate through an ablation
study that the details in our network pipeline are crucial for

the part segmentation performance. From rows 7 to 12 in
Table 2, we report the results of the following cases (in or-
der): 1) when the query fa(u), key gk(si), and value gv(si)
vectors are not normalized, 2) when the softmax σ is applied
across the super-segments only, 3) across the part names
only, 4) across super-segments first and then part names (a
reverse order), 5) when adding a global feature to the fea-
ture of each super-segment, and 6) when not using the cross-
entropy-based regularization loss (Equation 4).

From the results in the table and also in Figure 4, we can
draw several conclusions. First, the normalization of query,
key, and value vectors and also the softmax σ along with
the part names before the super-segments improve over-
all mIoUs and particularly help detect optional parts ac-
curately. See the arms in the sixth and seventh columns
of Figure 4 compared to ours in the third column. Inter-
estingly, with these, the attention is improved to be better
aligned with the semantic parts while the accuracy of target
shape classification is slightly decreased. Second, it is cru-
cial to have the double softmax in the order of part names
first and then super-segments. When the order is switched
(the ninth column), or applying softmax only across part
names (the eighth column), the overall quality of segmen-
tation becomes worse; see the red circles in the eighth and
ninth columns of Figure 4 for some failure examples. Third,
as discussed in Section 3, the attention is not aligned with
the semantic parts at all when a global feature is concate-
nated to a local feature of super-segments (the tenth column
in Figure 4). The global feature is obtained by max-pooling
the local features, following the idea of PointNet [30]. This
result is obvious since the network can access the global
shape information from any super-segment without care-
fully attending to a specific region. Last, the cross-entropy-
based regularization improves mIoUs particularly for seat,
which has the smallest utterances in the training dataset
(2215 out of 32600), and also increases the target shape
classification accuracy.

Few-Shot Learning We further investigate whether part
segment annotations on a few shapes can improve the seg-
mentation accuracy in a few-shot learning setup. Here, we
only consider the PN-Aware case and also assume that a few
shapes (1, 8, and 32) are given with ground truth part seg-
mentation. Note that 1, 8, and 32 are very small numbers
compared to 4509 number of entire shapes in the training
dataset. We test exploiting the additional supervision by
learning per-point classification with a cross entropy loss
and the given annotated shapes after each epoch of the target
shape discrimination task learning the attention. The results
in Table 2 (rows 13-15) show improvements of mIoUs with
the few-shot learning. Figure 5 also illustrates an exam-
ple that the segmentation boundaries are refined even with
a single-shot.
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GT Ours
(PN-Aware) k=1 k=8 k=32

Figure 5. The effect of few-shot learning. Even a very small
amount of ground truth eliminates things that the model might be
confused about without supervision, such as the boundary between
back and seat, and predicting the edge of the back as an arm.

Table 3. Out-of-distribution quantitative results. Our model can
also segment out-of-distribution shapes. This table shows mIoUs
with the attention maps learned with Chair parts and the part seg-
ments of the other classes in ShapeNet. Semantically correspond-
ing parts have higher mIoUs, e.g., Chair leg → Table leg and Lamp
base.

Other
Classes

Chair (w/ PN-Aware)
Back Seat Leg Arm

Table
Top 11.0 78.2 1.2 3.5
Leg 4.5 2.8 66.2 11.0

Connector 26.5 3.2 2.1 15.7

Lamps

Base 2.0 1.0 44.6 9.8
Shade 27.5 38.9 7.1 16.6

Canopy 4.9 7.0 5.1 20.8
Tube 21.4 7.7 20.6 2.2

4.3. Out-of-Distribution Test

Figure 6. Out-of-Distribution Test. Each color indicates each pre-
dicted part as shown in Fig. 4. In each category, the model predicts
the part as the semantically matching part in a chair, predicting
lower part as leg.

We experiment how much the part segment information
learned from the Chairs in the CiC dataset can be zero-
shot generalizable to the other shape categories, namely,
Tables and Lamps. Table 3 shows mIoUs across the parts
of Chairs and the parts of Tables and Lamps. The results
show very strong correlations between Chair seat and Table
top as well as Chair leg and Table leg. Figure 6 also clearly
shows boundaries of the Table top and leg segments. Even

the information about Chair parts is well-generalizable to
Lamps, a category that is largely different geometrically
from Chairs. The second part of the table illustrates that
Lamp base can be detected as Chair leg, and also Lamp
shade is discriminated as Chair back and seat. The qualita-
tive results are also shown in the second row of Figure 6.

4.4. Word Attention Visualizations

Attn. Enc. !!: two long thing leg thin
Clsf. Enc. !": two long thing leg thin

Attn. Enc. !!: Back with six slats
Clsf. Enc. !": Back with six slats

0 1

Figure 7. Word Attention of PN-Agnostic. Two encoders attend
different words in the utterance to play different roles: “where to
look” and “what shape it should be”.

Our utterance encoders, attention encoder and classifi-
cation encoder (which use the same architecture as Shape-
Glot [3]) also learn attention over words, and we visual-
ize the word attention for some examples in Figure 7. The
color changes from dark blue to yellow when the attention
weights for words increases from 0 to 1. Interestingly, the
attention encoder mainly attends the nouns indicating the
parts (the sentences above in each row), while the classifi-
cation encoder rather focuses on a general context (the sen-
tences below).

5. Conclusion
We proposed PartGlot, a framework learning part seg-

mentation of 3D shape from linguistic descriptions. With-
out any direct supervision on part segmentation, our net-
work classifying the target shape described by a given ut-
terance can detect and segment part regions through an at-
tention module. We not only introduced the first proposal
of language-based 3D part segmentation but also designed
a network curated for the emergence of part structure from
the attention. We also proposed how predefined part names
can be exploited in training to achieve the best performance.
We finally demonstrated the part information learned by the
network is transferable to other classes of shapes.

Negative Societal Impacts Our network can be poten-
tially biased by harmful languages. However, we do not
foresee any near-future risks of learning the connection be-
tween language and shape.

Limitations and Future Work While we learn attention
both on words in an utterance and super-segments in a
shape, learning correlation between these two is a challeng-
ing task. We plan to investigate this in future research.
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Appendix

A.1. Effect of Granularity of Super-Segments
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Figure A8. Results with different granularities of the super-
segments. Left shows the average mIoUs, and right shows the tar-
get shape classification accuracy. The X-axis is the average num-
ber of super-segments in each shape in log scale; the higher, the
smaller the super-segments are.

Our results in Section 4.2 shows that using a set of super-
segments as input instead of a point cloud is one of the
crucial parts of our framework to achieve meaningful seg-
mentation results through attention, while the accuracy of
the target shape classification is not affected much by the
representation of shapes. We further analyze the effect of
super-segments while varying their granularity. Although
BSP-Net has parameters about the number of planes and
the maximum number of convexes in training, increasing
these numbers does not lead to producing more final con-
vexes in practice. Thus, to achieve finer granularities, we
use K-means clustering implemented in scikit-learn [29] to
split each given super-segment into smaller pieces. For each
super-segment si, we use K-means clustering for the points
included in the super-segment (let Pi denote the points)
and set the number of subgroups K in the clustering to be
[|Pi|/N ], where N is our granularity parameter and [·] is
the rounding function. When N is set to be the number of
points in the entire point cloud (2048 in our experiments), it
is the extreme case that the set of super-segments becomes
the input point cloud itself. We test our network (with the
PN-Aware setup) while varying the N from 16 to 256 (and
2048, which is the extreme case). Figure A8 illustrates the
changes of the average mIoU in the part segmentation (left)
and the accuracy of the target shape classification (right).
The X-axis of the plots shows the average number of super-
segments in each shape in log scale, and the Y-axis shows
either the average mIoU or the accuracy. Interestingly, the
granularity of the super-segments does not make any mean-
ingful difference in the accuracy of the target shape clas-
sification but greatly affects the part segmentation mIoUs;
more super-segments (smaller super-segments) results in a
worse segmentation. This concludes that pre-merging the
points as much as possible with geometric properties is the
key to obtaining meaningful attention maps aligned with se-
mantic parts.

A.2. Effect of Learning Attention

Table A4. Comparison with the cases of using uniform and ran-
dom attention maps.

Method Classification Accuracy (%)

Random {wi} 58.4
Uniform {wi} 59.3

Ours (Learning {wi}) 61.5

To demonstrate whether our neural network learns the at-
tention in a way to improve the discrimination of the target
shape, we compare our attention module with two cases:
using uniform attention maps and using random attention
maps. As shown in Table A7, uniform attention maps pro-
vide better accuracy in the target shape classification com-
pared with random attention maps, although its accuracy is
still lower than the accuracy of our network learning the at-
tention.

A.3. Out-of-Distribution Test — More Categories

Table A5. Quantitative results of the out-of-distribution test with
Airplanes and Cars. The highest mIoU for each part of the target
class is marked in bold.

Other
Classes

Chair (w/ PN-Aware)
Back Seat Leg Arm

Airplane

Body 17.5 26.1 30.2 0.2
Wing 3.1 47.5 3.5 6.3
Tail 46.5 0.8 1.0 0.2

Engine 5.4 11.6 6.1 7.5

Car

Roof 6.2 2.8 0.6 7.5
Hood 0.1 17.5 1.5 0.6
Wheel 9.9 12.5 21.3 1.6
Body 45.3 29.5 2.4 10.5

In addition to the out-of-distribution test results in Sec-
tion 4.3 we provide more results testing our network trained
with Chair shapes and utterances to Airplanes and Cars.
The mIoUs across the parts are reported in Table 3, and
qualitative results are in Section A.9. The model trained
with the PN-Aware setup is used. Despite the big differ-
ence in the shapes, our model still recognizes some seman-
tic parts such as Airplane body, tail, and wing and Car body
and wheel.

A.4. Effect of Training Data Size

Table A6 illustrates results when only 50% and 25% of
utterances are used in training (in the PN-Aware case). The
part segmentation mIoUs are not changed much even when
only 50% of the utterances are used, even when the target
shape classification accuracy is decreased. In an extreme
case using only 25% of the utterances in training, the mIoUs
are decreased. This shows that our network does not neces-
sitate a huge scale of data to obtain meaningful results.
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Table A6. Results when training with a subset of the training data.
Bold indicates the best result for each column.

Utterance
Rate

Segmentation mIoU(%) Classif.
Acc.(%)Back Seat Leg Arm Avg.

100% 84.9 83.6 78.9 70.4 79.4 61.5
50% 80.9 79.0 77.1 70.9 77.0 56.0
25% 56.5 37.5 76.1 66.1 59.1 53.8

A.5. Cross-Part mIoUs

Table A7. Part segmentation mIoUs across parts. The highest
mIoU for each ground truth part is marked in bold.

Ground
Truth

Prediction
Back Seat Leg Arm

PN-Agnostic (Sec. 3.2)

Back 82.2 4.2 1.6 3.5
Seat 0.8 78.8 1.5 5.2
Leg 0.5 4.2 75.5 3.1
Arm 0.2 0.7 0.8 40.6

PN-Aware (Sec. 3.3)

Back 84.9 2.5 1.5 1.7
Seat 1.8 83.6 2.6 1.4
Leg 1.1 2.4 78.9 0.7
Arm 0.4 0.6 1.3 70.4

We report the cross-part mIoUs for both PN-Agnostic
and PN-Aware cases in Table A7. The diagonals are the
same numbers reported in row 2 and 3 in Table 2. For both
cases, the mIoUs of the corresponding parts are overwhelm-
ingly higher than the ones of the other parts, indicating that
there is almost no overlap across the attention maps of the
parts.

A.6. Low Rank Regularization in AdaCoSeg [46]

Table A8. Results with the group consistency loss introduced by
AdaCoSeg [46]. Bold indicates the best result for each column.

Regularization Segmentation mIoU(%) Classif.
Acc.(%)Back Seat Leg Arm Avg.

LCE (Ours) 84.9 83.6 78.9 70.4 79.4 61.5
LCE + LCoseg 83.4 82.2 79.2 72.0 79.2 60.2

LCoseg 79.2 80.1 78.1 72.5 77.5 60.6

AdaCoSeg [46] discussed in Section 2 introduces a novel
rank-based loss function improving the performance of the
co-segmentation task. The loss function called group con-
sistency loss (see Section 4.2 in the AdaCoSeg paper) max-
imizes the similarity of descriptors of the entities (super-
segments in our case) included in the same group while
differentiating the descriptors of entities assigned to differ-
ent groups. The loss is computed with entities of multiple
shapes in a minibatch, and thus it can enforce the consis-
tency of the segmentation across multiple shapes.

We try to adapt this loss function to our network training.
While this loss does not require labels, it still needs to define
groups. Hence, to adapt the loss to our network training,
we use the PN-Aware setup and consider the sets of super-
segments belonging to each predefined part as the groups.
For each super-segment si, we take the output of Per-Super
Segment Encoder g(si), the output of the last layer fed to
predict the key gk(si) and value gv(si) vectors. We collate
these descriptors for the super-segments assigned to each
part (based on the attention outputs); let Mk denote the set
of the descriptors (a matrix) for the k-th part. The group
consistency loss of AdaCoSeg is then defined as follows:

LCoseg = 1 +max
k

rank(Mk)−min
k 6=l

rank([Mk,Ml]),

(5)

where rank indicates the second singular value of the
matrix and [·] denotes the concatenation of two matrices.

Table A8 shows the results when using the group consis-
tency loss in our network training. We find that the group
consistency loss does not help improve the segmentation ac-
curacy in our case. This result implies that the attention
module in our network already learns consistent attention
maps for each part.

A.7. Different Utterance Encoder — ALBERT [25]

Table A9. Results with ALBERT [25] as utterance encoders. Bold
indicates the best result for each column.

Utterance
Encoder

Segmentation mIoU(%) Classif.
Acc.(%)Back Seat Leg Arm Avg.

ALBERT (w/ FT) 83.1 81.5 79.7 61.1 76.4 62.9
ALBERT (w/o FT) 80.9 80.8 78.7 72.6 78.2 57.8

LSTM (Ours) 84.9 83.6 78.9 70.4 79.4 61.5

For the utterance encoding, we also try the other
Transformer-based encoder: ALBERT [25], which is a lite
version of BERT [9]. We experimented with ALBERT
in two ways: using a pretrained model and finetuning it,
and without a pretrained model and training from scratch;
the pretrained model is obtained from training BookCorpus
[47] dataset with a masked language model objective. In
the PN-Aware setup, the output of the classification encoder
fc(u) is obtained from the last hidden state of the [CLS]
token, which is further processed through an MLP {768-
256-64}. The output of the attention encoder fa(lk) with
a part name lk is obtained from the word embedding layer
of ALBERT and also processed through an MLP. The re-
sults are compared in Table A9. Interestingly, the finetuned
ALBERT does not improve the overall part segmentation
mIoUs compared with our case of using a much simpler en-
coder, LSTM, while the target shape classification accuracy

12



is higher. When training ALBERT from scratch, the classi-
fication accuracy decreases compared to using LSTM.

A.8. Implementation Details

For Per-Super-Segment Encoder g, we used a simplified
version PointNet [30]. Our network takes a set of points
included in each super-segment as input and processes the
points using 64-dimensional linear layers with BatchNorms
and ReLU. The features of each point are then max-pooled
to produce the feature of the super-segment.

In the utterance encoders fa(·) and fc(·), the dimensions
of the word embedding and the LSTM hidden states are set
to 100 and 64, respectively. The word attention method in-
troduced in ShapeGlot [3] is used. In the cross attention
module, a single attention layer is used, which is followed
by an MLP {64-128-64} and LayerNorm.

We train our networks for 30 epochs with batch size
64 and use the ADAM [24] optimizer. The initial learn-
ing rate is 10−3 and decayed by a polynomial scheduler
(power=0.9). Both regularization losses LCE and LCoseg
are weighted by 10−2. When computing cross entropy for
the target shape classification and also for the regulariza-
tion loss LCE, we follow ShapeGlot [3] and use the label
smoothing technique introduced by Szegedy et al. [35] with
the same parameters.
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A.9. More Segmentation Results

In the following, we provide more results of the part segmentation for Chairs, Tables, Lamps, Airplanes, and Cars, as
shown in Figure 1. All the examples in the figure below are randomly sampled.

Input
(Super-Seg.)

Back Seat Leg Arm Output
Segments

GT
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A.10. More Comparisons Results

We also provide more results of the comparison with the other methods below, as shown in Figure 4. All the examples in
the figure below are randomly sampled.

GT PN-Agnostic
(Ours)

PN-Aware
(Ours)

Points P→ Sp.-Seg. w/o
Unit Norm

σ(X)→ i σ(X)→ k σ(X)
→ i→ k

w/ Global Feat. w/o LCE
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